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ABSTRACT
SCTP is a general-purpose Transport Layer protocol with
out-of-the-box support for multi-streaming as well as multi-
homing. A protocol extension, which is denoted as CMT-
SCTP, extends SCTP by supporting Concurrent Multipath
Transfer (CMT). That is, multiple network paths are uti-
lized simultaneously in order to improve the payload data
throughput. However, dissimilar paths – i.e. paths having
different delays or bandwidths – are challenging and also
very likely in internet setups.

In this paper, we show how CMT-SCTP data transport per-
formance can be improved by combining multi-streaming
with an advanced stream scheduling policy and SCTP API
enhancements. The performance benefit of our approach in
dissimilar path setups is proven by simulations.12

Keywords: Concurrent Multipath Transfer, Scheduling,
Optimizations, Analysis

1. INTRODUCTION
The Stream Control Transmission Protocol (SCTP), which
is described in [14], has originally been developed for tele-
phone signaling, but evolved into a general-purpose trans-
port layer protocol. It is reliable, connection- and messa-
ge-oriented. Multiple small messages can be bundled into
a single packet to avoid overhead. Additional features are
multi-homing, to use multiple network paths for failover,
and multi-streaming to reduce the impact of head-of-line
blocking. The packet format is extensible, so features can
be added without changing the base protocol.

With the increasing popularity of multi-homed networks –
being deployed to achieve link redundancy – there is also
a rising demand for load sharing by utilizing all available
network paths (for which providers are paid for) to enhance
application data throughput. The Concurrent Multipath
Transfer (CMT) extension, CMT-SCTP [3,4,8], allows such
a load sharing.

1Parts of this work have been funded by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft).
2The authors would like to thank the anonymous reviewers
for their helpful comments and Sangtae Ha for his friendly
support.

To realize reliable transport, SCTP acknowledges the lat-
est message of received continuous data with a so-called
cumulative acknowledgement, similar to the Transmission
Control Protocol (TCP). However, it also supports the pre-
liminary acknowledgement of messages received out of or-
der, hence the acknowledgements of SCTP are called se-
lective (SACK). Since the acknowledgement of out-of-order
data is just preliminary, the sender still has to keep the mes-
sages in its retransmission queue until they are cumulatively
acknowledged. With the extension Non-Renegable Selective
Acknowledgements (NR-SACK) [10], the receiver will also
acknowledge out-of-order messages definitively, which then
can be removed from the sender’s retransmission queue im-
mediately.

The multi-streaming feature of SCTP requires a scheduler
on the sender and also receiver side to decide on the order in
which messages of different streams are sent and delivered
to the application, respectively. Using a specific scheduling
algorithm depending on the scenario has proven to be ben-
eficial [12]. Currently used schedulers, like Round-Robin
which simply cycles through the streams, do not consider
multiple paths. Therefore, in this paper we will analyze if
there is also potential for optimizations with a CMT-aware
scheduling, when using multiple streams and multiple paths
with CMT enabled.

The structure of this paper is as follows: in Section 2, multi-
path transfer is introduced. Details on multi-streaming and
the respective scheduling are given in sections 3 and 4. Sec-
tion 5 describes the simulation model and setup, followed by
the performance analysis in Section 6.

2. MULTI-PATH TRANSFER
Figure 1 illustrates two dual-homed endpoints A and B,
each equipped with two network interface cards and there-
fore two IP addresses. This results in two paths (path #1
and path #2) for each direction (A→ B,B → A). Clearly, a
straightforward approach is to use a Transport Layer proto-
col which is capable of this so-called Concurrent Multipath
Transfer (CMT). Two protocol approaches are actively dis-
cussed in the IETF Transport Area Working Group:

• CMT-SCTP [1,8] is simply a CMT extension for the al-
ready multi-homed Stream Control Transmission Pro-



Figure 1: The Principle of Multi-Homing

tocol (SCTP) [14]. The variant CMT/RP-SCTP [1,
2] applies Resource Pooling (RP) [17] to achieve fair
bandwidth usage in the presence of shared bottlenecks.

• Multipath TCP (MPTCP) [7] is an extensive CMT
modification of the well-known TCP [11] protocol, with
strong emphasis on interoperability with and backward
compatibility to existing middleware (like NAT boxes
or transparent proxies) which are not aware of the
CMT transport.

For its applications, MPTCP provides – just like TCP – the
reliable and ordered transport of a single byte stream over
a connection. Clearly, the challenge of this kind of service is
to timely reorder the data transmitted over paths with dif-
ferent characteristics (i.e. delay, bandwidth) at the receiver
side, at a small memory footprint and management over-
head. SCTP, on the other hand – although being able to
provide a reliable and ordered transport similar to TCP –
has more flexibility with its concept of multi-streaming. The
introduction of multi-streaming can simplify the transport
task. In the following, we will show how to utilize this fea-
ture to improve the performance of SCTP multi-path data
transmission.

3. MULTI-STREAMING
Multiple streams within a connection allow the separation
of logically independent data. The application assigns each
message to a stream, messages belonging together to the
same one. In case of SCTP this is done with an identifier
for each message, indicating the stream. With this identi-
fier the protocol only needs to restore the sequence of mes-
sages belonging together, i.e. those of the same stream, while
messages of different streams can arrive unordered. Hence,
after a packet loss only messages of the affected streams
have to be delayed to restore the sequence, while on other
streams the transmission can be continued. This results in
a reduced average delay compared to other reliable proto-
cols without multi-streaming, like TCP, where all following
messages are delayed after a loss, resulting in a so-called
head-of-line blocking.

Figure 2 provides an illustration of transferring data of mul-
tiple streams over a single connection. Every message passed
by the sending application is inserted into the corresponding
stream buffer. The messages are then bundled into packets
for sending. The order of the messages of a single stream
is given, however, the order of messages of different streams
has to be determined by a scheduler. Upon reception, the
messages are sorted into stream buffers again, to restore

Figure 2: The Principle of Multi-Streaming

their order. When passing them to the receiving applica-
tion, another scheduler is necessary to decide on the order
in which messages of different streams are delivered.

4. TRANSMISSION SCHEDULING
For multi-streaming, sender and receiver schedulers are nec-
essary. The sender scheduler has to decide on the order in
which messages are sent, while the receiver scheduler on the
order in which the data is passed to the application. In the
SCTP specification there is no statement about how these
schedulers have to be realized and this is therefore open to
the implementation. Today’s implementations use for sender
scheduling the generic algorithms Round-Robin (FreeBSD)
and First-Come, First-Served (Linux, Solaris), respectively.
However, in some scenarios it can be beneficial to use a spe-
cific scheduler. The receiver scheduler only decides on the
order in which messages are delivered, so there is little ben-
efit in varying the algorithm. The sender scheduler on the
contrary, can affect the behavior on the wire and therefore
different algorithms can be used as an optimization. The
benefits of using several common scheduling approaches are
described in [12].

Multi-path transfer is also a scenario where a special sched-
uler can be used for optimization. The most severe issue
with multiple paths is the reordering of the messages, caused
by differing delays on the paths. The more messages have
been reordered, the more complex is the restoration for the
receiver and the more buffer space is necessary. The avail-
able buffer space has to be at least equal to the bandwidth-
delay product, which will be shown in detail in section 6.1,
otherwise the data transfer has to be slowed down. The sim-
plest approach to mitigate reordering is to assign streams to
paths and send messages of the same stream on the same
path. This avoids that some of the messages sent in-order
pass the ones on the slower path. However, just assigning
streams to paths may not be the optimal solution in case
the delays of the paths or the amount of data of the streams
differ largely from each other. In such cases the slower paths
can be overloaded while the faster paths remain unchal-
lenged. Hence, depending on the scenario, multiple specific
streams may have to be assigned to one path or a stream
with a large amount of data split up on multiple paths. This
can require a very complex and resource-intensive scheduler.
To examine the potential of a scheduler which considers mul-
tiple and also diverse paths, we will analyze the possible per-
formance benefits with an optimized scheduler and compare
it to the standard implementation. This optimized sched-
uler will always choose the optimal combination of streams
and paths to achieve the maximum optimization, depending
on the scenario.



Figure 3: The Simulation Setup

5. SIMULATION MODEL AND SETUP
For our performance evaluation, we have used the OM-
NeT++-based INET framework with our CMT-SCTP si-
mulation model [3]. The SimProcTC [6] tool-chain has
been used for parametrization and result processing. The
result plots in this paper show the average values of 24 runs
and their 95% confidence intervals. Figure 3 illustrates the
simulation setup: sender and receiver have been connected
via two paths. The following configuration parameters have
been used, unless otherwise specified:

• The QoS parameters (bandwidth, delay, bit error rate)
of the links between the routers of each path have been
configurable (default: bandwidth of ρP=10 Mbit/s,
delay of δP=10ms and no bit errors on each path P ).
The bottleneck network interfaces use FIFO queues
having a capacity of 100 packets.

• After association establishment and transmission start,
the actual throughput measurement has been started
after a settling time of 19s. The measurement dura-
tion has been 300s, after which the results do not vary
anymore.

• The sender has been saturated (i.e. it has tried to
transmit as much data as possible); the message size
has been 1,452 bytes at an MTU of 1,500 bytes (i.e.
MTU-sized packets [14]; overhead is about 3.2%). It
has equally distributed its messages on two streams.
All messages use ordered transmission (i.e. the packet
sequence is preserved within each stream).

• Send and receive buffers have the same length σ. Buffer
Splitting [4] and NR-SACK [9,10] have been turned on;
the effect of NR-SACKs will be examined in Subsec-
tion 6.3.

6. PERFORMANCE ANALYSIS
For our performance analysis, we first examine the basic sce-
narios of path dissimilarity with respect to delay (Subsec-
tion 6.1) and bandwidth (Subsection 6.2) with two streams.
After that, we analyze a more advanced scenario (Subsec-
tion 6.3).

6.1 Delay Dissimilarity
Figure 4 shows the resulting CMT-SCTP payload through-
put for varying the send/receive buffer sizes σ of a trans-
mission on paths A and B; δB denotes the delay on path B
in ms. The bandwidths on both paths – ρA and ρB – are
constant at 10 Mbit/s. In order to fully utilize a path, it is
necessary to have at least the number of bytes given by the
RTT-bandwidth product in flight. Therefore, the send and
receive buffers need at least a size of:

σ ≥ 2 ∗ δA ∗ ρA︸ ︷︷ ︸
Path A

+ 2 ∗ δB ∗ ρB︸ ︷︷ ︸
Path B

+ ε. (1)

Additional delays are introduced by queues within the net-
work (their average size depends on the amount of conges-

Figure 4: Throughput on Dissimilar Delay Paths

tion), which further increases the needed buffer size by a
term ε. This is reflected by the results of the 10ms/10ms
symmetric scenario (curves 1 and 4): at σ=64 KiB (the
pure RTT-bandwidth-product according to Equation 1 is
50,000 bytes), the expected CMT-SCTP payload through-
put of around 19.2 Mbit/s is reached – regardless of the
scheduling policy (Σ=Round-Robin for round-robin schedul-
ing or Σ=Fixed for mapping stream #0 to path A and
stream #1 to path B).

With dissimilar delay paths (here: δB=50ms or δB=75ms;
curves 2 and 5 or curves 3 and 6, respectively), the choice of
the stream scheduler makes a difference: for δB=75ms, the
fixed stream mapping (i.e. Σ=Fixed) already achieves the
full bandwidth for send and receive buffer sizes of σ=224 KiB
– while σ=288 KiB is required when using the round-robin
scheduling (i.e. Σ=Round-Robin). When the packets tra-
verse dissimilar delay paths, the necessary packet reordering
at the receiver side requires some space, i.e. out-of-sequence
chunks cannot leave the receive buffer until all preceding
chunks of the same stream have been received. Clearly, this
negative effect is smaller when the chunks of a stream have
a similar delay – which is achieved by the fixed stream map-
ping.

The corresponding average message delay (i.e. the time from
message generation until reception at the application layers)
is depicted in figure 5. As expected, there is no signifi-
cant message delay difference between stream #0 (left-hand
plot) and stream #1 (right-hand plot) in the symmetric
10ms/10ms case for round-robin scheduling (i.e. Σ=Round-
Robin; see curves 1 and 4). Note, that the message delay
linearly increases with the send and receive buffer size σ,
once σ has exceeded the minimum given by Equation 1: a
higher setting of σ cannot make the transmission faster – it
just increases the time the chunks of a message have to wait
in the send buffer until they actually can be transmitted
over the network.

As expected, round-robin scheduling (i.e. Σ=Round-Robin)
results in both streams having similar message delays, re-



Figure 5: Per-Stream Average Message Delay on Dissimilar Delay Paths

gardless of the path delay dissimilarity. Clearly, the fixed
stream mapping (i.e. Σ=Fixed) shows significant differences:
stream #0, using path A with a latency of δA=10ms, has
a significantly smaller message delay than stream #1, using
path B with a higher latency of δB≥50ms (compare curves 2
and 3). But the bandwidths of both streams remain equal
(not plotted here due to space limitations), as long as Equa-
tion 1 is satisfied. We will examine bandwidth dissimilarity
in the following Subsection 6.2.

In summary, the fixed stream mapping can – in comparison
to round-robin scheduling – achieve the maximum through-
put and reduced delay at smaller send and receive buffer
sizes.

6.2 Bandwidth Dissimilarity
In order to show the effects of bandwidth dissimilarity, fig-
ure 6 presents the CMT-SCTP payload throughput results
for varying the send/receive buffer sizes σ at path B whose
bandwidth ρB is set to 25 Mbit/s and 50 Mbit/s, respec-
tively. Using round-robin scheduling (i.e. Σ=Round-Robin),
the behavior is as anticipated (curves 5 and 6): for a suf-
ficiently large setting of σ (according to Equation 1), the

expected payload throughput of nearly ρA+ρB
2

per stream
is reached, i.e. the bandwidth is equally splited between the
two streams.

For the fixed stream mapping (i.e. Σ=Fixed; stream #0 on
path A, stream #1 on path B), the result is different: while
the throughput of stream #0 remains at 10 Mbit/s (since
path A’s bandwidth is set to ρA=10 Mbit/s) as expected, the
stream #1 is not able to utilize the higher bandwidths ρB
of path B (curves 1 and 2). Even worse, the achieved pay-
load throughput remains at around 10 Mbit/s, i.e. the same
throughput as for stream #0. The reason for this prob-
lem is the application layer, which – using the SCTP socket
API [16] – has no information on the current per-stream
contents in the send buffer. That is, the application layer is
notified to refill the buffer when its occupancy has dropped
under a certain threshold – but it has no information which
stream is currently low on data. Providing data in a round-

robin manner down to the SCTP layer leads to filling up the
buffer with data for stream #0 on the slow path A – while
stream #1 on the fast path B cannot get enough data to
utilize its path’s capacity.

Our solution is a small API extension [5] which allows the
sender to query the per-stream send buffer utilization. By
making the application layer aware of the stream dissimi-
larity introduced by the fixed stream mapping, the sender
application can generate an appropriate amount of data for
each stream. This is particularly useful for all kinds of
SCTP-based tunneling applications, e.g. Secure Shell (SSH)
channels [18] or signaling applications like SS7 [13]. With
our API extension (curves 3 and 4), the throughput behavior
of stream #1 is as desired: it can utilize the bandwidth ρB
of path B, and the overall payload throughput of the asso-
ciation is nearly ρA + ρB .

In summary, the fixed stream mapping requires an API ex-
tension to make applications aware of the stream dissimi-
larity. This is necessary for utilizing streams with different
bandwidths. This API extension has been contributed as
Internet Draft [5] to the IETF SCTP standardization pro-
cess.

6.3 Advanced Scenario
To further examine the performance of the fixed stream
mapping, we have used a more advanced setup consisting
of the paths A and B with constant bandwidths settings
of ρA=ρB=10 Mbit/s and delays δA=δB=10ms. To this
symmetric setup, we add a third path C with a bandwidth
setting of ρC=1 Mbit/s and delay δC=50ms. In the real
world, such a scenario is not unlikely when dynamically set-
ting up a DSL-based backup link. Using SCTP Dynamic
Address Reconfiguration (Add-IP) [15], the new path would
be dynamically added to the already existing paths of the
association. Figure 7 presents the resulting CMT-SCTP
throughput (left-hand plot) and average message delay over
all streams (right-hand plot) for varying the send/receive
buffer sizes σ. seven streams are multiplexed over the three
paths; the fixed stream mapping assigns streams #1, #3, #5



Figure 6: Per-Stream Bit Rate on Bandwidth Dissimilarity

Figure 7: Advanced Setup with Seven Streams over Three Paths

to path A, streams #2, #4, #6 to path B and stream #0 to
path C. A real-world use case for such a seven-stream setup
is e.g. an SSH-based tunneling scenario [18].

Clearly, round-robin scheduling (i.e. Σ=Round-Robin) does
not perform well in this setup (see curve 4). Even for a
send/receive buffer size setting of σ=256 KiB, the through-
put remains below 3 Mbit/s – at a message delay of more
than 600ms! In case of an SSH tunneling setup – which may
transport interactive session data – this performance is un-
acceptable. Using the fixed stream mapping (i.e. Σ=Fixed),
the payload throughput performance improves to slightly
above 5 Mbit/s and a message delay of around 150ms (see
curve 2). While the delay improvement is significant, the
throughput performance is still below the expectations.

The reason for this low performance is packet reordering –
due to path delay dissimilarity – and the implied queuing
effects: while the receive buffer can provide its per-stream
messages to the application layer and remove the corre-
sponding chunk data (i.e. gaining space for new chunks),
once the data of a stream is in sequence, the sender may
only drop them on reception of a cumulative acknowledge-
ment covering these chunks. That is, a chunk can only be
removed from the send buffer when all preceding chunks
– regardless of their stream numbers – have been acknowl-
edged. This is necessary, since a receiver may revoke gap ac-
knowledgements above the cumulative acknowledgement at
any time. In order to overcome this problem, the NR-SACK
extension [9, 10] becomes highly useful: the receiver may
non-revokably acknowledge chunks above the cumulative ac-



knowledgement, allowing the sender to drop these chunks
from its buffer – and gaining space to accept new data from
its application layer. Using NR-SACKs (i.e. ν=true) sig-
nificantly improves the performance when using the fixed
stream mapping: at σ=128 KiB, it reaches the expected
payload throughput of around 20 Mbit/s, while further re-
ducing the message delay to around 60ms (curve 1). Note,
that NR-SACK only has a small effect when using round-
robin scheduling (i.e. Σ=Round-Robin; curve 3), since mes-
sages of all streams are transported over all paths – and
waiting for acknowledgements on other paths is necessary
anyway.

In summary, it is highly desirable to combine a fixed stream
mapping with the NR-SACK extension in order to achieve
maximum throughput at a small delay in dissimilar setups,
especially because there are no disadvantages with this op-
timization.

7. CONCLUSIONS
Using CMT with a single byte stream is a challenging task,
particularly when the memory footprint and management
complexity have to be kept reasonably small. But unlike
MPTCP, the SCTP protocol supports multi-streaming. Us-
ing CMT-SCTP for SCTP-based CMT transport, we have
introduced an advanced stream scheduling policy to achieve
an improved service performance: by mapping each stream
to a certain path, the buffer sizes can be kept small. In
comparison to round-robin scheduling, our approach utilizes
the network with smaller buffer sizes while also reducing the
per-stream message delay.

As part of future work, we are going to design and develop
a dynamic scheduling algorithm which automatically maps
streams to paths, according to given QoS properties of the
streams. Our proposed enhancements to SCTP will also be
realized in the FreeBSD kernel implementation, in order to
allow for tests in real-world setups. Finally, we are also going
to contribute our results into the ongoing IETF standard-
ization process of SCTP.
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