
Version 1.0

Robin Seggelmann (seggelmann@fh-muenster.de)

License: UVM, CC-BY-ND

In this document the Datagram Transport Layer Security (DTLS) protocol, a
modifcation of the Transmission Control Protocol (TCP) for unreliable transport
protocols, and its extensions SCTP-aware DTLS and Heartbeats will be
introduced. OpenSSL has currently the most advanced open source
implementation, which will be described including its API.

Datagram Transport Layer Security

The Transport Layer Security (TLS) protocol [1] is a widely deployed security
solution for reliable transport protocols. Although it has been developed for any
transport protocol which is reliable and maintains the order of the messages,
these requirements are only met without limitations by the Transmission
Control Protocol (TCP). Securing the unreliable User Datagram Protocol (UDP) as
well as the Stream Control Transmission Protocol (SCTP) [2] is not possible or
only very limited. Therefore, TLS was modifed to allow unreliable and out of
order transfer, which resulted in Datagram Transport Layer Security (DTLS), as
described in RFC 4347 [3].

Protocol Introduction

TLS has been designed for reliable transport protocols, that is it expects no lost
or reordered messages from the transport layer, which not even has to be
message-oriented, but can also be a simple byte stream. If it detects that a
message is lost or out of order, it reasonably assumes an attack and drops the
connection. Unfortunately, this makes it impossible to use it with unreliable
transport protocols, with which losses and reordering are very likely. So the
main problem is to tolerate unreliability and not creating any security issues
while doing so.

Base Protocol

The DTLS protocol has, like TLS, a base protocol called Record Layer, and four
subprotocols on top of it. These are the Handshake, the ChangeCipherSpec and
the Alert protocol as well as the application data protocol.

Record Layer

The header of the Record Layer consists of the Content Type, that is which
subprotocol it is carrying, the Protocol Version and its Length. It retains
message limits, in case the transport layer does not. Each Record message has
a unique sequence number, which is increased with every message sent. TLS

maintains this number implicit on both peers, that is it is not transmitted.
Nonetheless, it is used for the calculation of the Hashed Message
Authentication Code (HMAC), which is used to ensure the integrity of the
message. If a received message does not have the expected sequence number,
the hash cannot be verifed and the connection is dropped. This behavior is
counterproductive with unreliable transport protocols, so the DTLS Record
Header has been extended. The sequence number is part of the header, as well
as the epoch, which is increased with every successful handshake and also
used for the hash calculation. The extended DTLS Record Header is illustrated
in Figure 1.

Figure 1: DTLS Record Header

Handshake Protocol

To set up a new connection and negotiate the security parameters, like cipher
suite, hash algorithms or compression, the Handshake protocol is used. The
client initiates the handshake by sending a ClientHello message to the server.
This message contains the supported cipher suites, hash and compression
algorithms and a random number. The server is supposed to respond with a
ServerHello, which contains the cipher suite and algorithms the server has
chosen from the ones the client ofered and also a random number. Both
random numbers will be used, among other data, to calculate the master
secret. The server may continue with a ServerCertifcate with its certifcates to
authenticate itself, if necessary. In that case it can also send a
CertifcateRequest, to provoke the client to authenticate, too. For some cipher
suites additional data is necessary for the calculation of the secret, which can
be send with a ServerKeyExchange. Since the last three messages mentioned
are optional, a ServerHelloDone indicates when no more messages follow from
the server.

This part of the handshake is a problem with connection-less transport
protocols, because there is no transport connection setup necessary and an
attacker could just send many ClientHellos to a server. This could be used for a
Denial of Service (DOS) attack against the server, which will start a new
session, thus allocating resources, for every ClientHello, or against another
victim by redirecting the much larger response of the server to it, thus
multiplying the attacker's bandwidth. To prevent this issue, DTLS uses an
additional handshake message, called HelloVerifyRequest. It is sent in response
to the ClientHello and contains a so-called cookie of arbitrary data, preferably
signed. The server will only send this message without allocating any
resources. The client then has to repeat its ClientHello with the cookie
attached. If the cookie can be verifed, hence the signature, the server knows
that the client has not used a faked address, and since the HelloVerifyRequest

is small and has to be answered before the server sends any more data, no
DOS attacks are possible anymore. After this verifcation the handshake will be
continued as before, with the server fnally sending the ServerHello.

After the ServerHelloDone, the client has to send its certifcates with a
ClientCertifcate if the server requested authentication. This is followed by a
ClientKeyExchange, which contains its public key or other cryptographic data,
depending on the cipher suite used. Also depending on the cipher suite is
whether a CertifcateVerify to verify a signed certifcate has to be sent. At this
point both peers have enough information to calculate the master secret. Thus,
the client sends the ChangeCipherSpec, to announce that the negotiated
parameters and the secret will be used from now on. Its last message is the
Finished, which contains a hash calculated over the entire handshake and is
encrypted already. The server concludes the handshake by also sending the
ChangeCipherSpec and Finished. The complete handshake sequence is
depicted in Figure 2.

Figure 2: DTLS Handshake with Flights

Since the handshake cannot be completed if one or more messages are
missing, it has to be performed reliable. With an unreliable transport, DTLS has
to ensure the reliability of handshake messages itself. Therefore, it needs a
timer to retransmit lost messages. For increased efciency, DTLS does not use
a timer for every message, but for bundles of messages, called fights. A fight
contains all messages before the sending side changes (compare Figure 2). For
every fight sent a timer is started, and if there is no response until the timer
expires, the entire fight will be retransmitted.

Another issue is that most protocols other than TCP are message-oriented,
while TCP is bytestream-oriented. TCP does not care how large a Record
message is, it will just split it in as many parts as necessary to send it.

Message-oriented protocols on the other hand, may not have a mechanism to
fragment and reassemble messages. The consequence is that only messages
smaller than the current Path-MTU can be sent. The Path Maximum
Transmission Unit is the smallest common message size every host on the path
between the peers can handle. Especially the messages containing certifcates
may be larger than the current Path-MTU. To still be able to transfer these
messages, DTLS has to provide its own fragmentation mechanism. This is
achieved by extending the Handshake Message Header. With TLS every
handshake message starts with its Message Type and its Length. For DTLS a
Fragment Offset and Fragment Length entry is added.

DTLS also has to deal with reordered messages, which can likely occur with
unreliable transports. To handle handshake messages arriving in the wrong
order, the Handshake Message Header is further extended and a Message
Sequence Number is added. This allows to restore the correct sequence of the
handshake. The new header is shown in Figure 3.

Figure 3: DTLS Handshake Message Header

Alert Protocol

The Alert protocol is used to notify warnings or errors that might have occurred,
for example if a certifcate could not be verifed. While errors are always fatal
and lead to the immediate shutdown of the connection, warnings are
informational and the connection can remain established. With DTLS some
errors are just sent as warnings, like BadRecordMAC, RecordOverflow or
DecryptionFailed, because otherwise the connection-less protocol would allow
an attacker to shut down the connection with an arbitrary message to one of
the peers. Additionally, alert messages are also used to gracefully shut down
the connection. When a peer has nothing to send anymore, it should send a
CloseNotify alert. The connection is closed after both peers have sent it.

Replay Check

An attacker is unable to modify messages, due to the encryption and integrity
checks. However, with a connection-less transport protocol he could just copy a
valid message and resend it to the receiver. If he has knowledge of the
application protocol used, he may be able to reissue a command in this way. To
prevent that, DTLS has its own Replay Check. A window is maintained in which
Record Sequence Numbers of received messages are valid, if not already seen.
Every other message will be dropped.

Heartbeat Extension

When using connection-less transport protocols, there is no acknowledgement
of received data, so when the receiver does not return any data, a sender does
not know if it is still alive. If the used application protocol does not provide any
mechanism to check if the peer still exists and responds, the only way is to
initiate a handshake for renegotiation, which is quite inconvenient.

The Heartbeat Extension for TLS and DTLS [4] adds two new messages to the
protocol, the HeartbeatRequest and the HeartbeatResponse. These can be
used to realize a keep-alive functionality, because every received
HeartbeatRequest has to be responded with a HeartbeatResponse immediately.
Both messages consist of their type, length, an arbitrary payload and padding,
as shown in Figure 4. The response to a request must always return the same
payload but no padding. This allows to realize a Path-MTU Discovery by sending
requests with increasing padding until there is no answer anymore, because
one of the hosts on the path cannot handle the message size any more. The
smaller response ensures that only one direction of the path is measured,
because the routing and so the Path-MTU can be diferent on each way.

Figure 4: Heartbeat Message Scheme

For backward compatibility, the Heartbeat Extension can only be used if both
peers support it, otherwise the connection may be dropped with an unexpected
message alert. This is achieved by adding so called Hello Extensions to the
ClientHello and ServerHello, respectively. If both peers indicate their support,
the extension can be used. Since mobile clients usually want to avoid any
unnecessary trafc to save battery power, the Hello Extension can also be used
to indicate if the host is actually willing to respond to Heartbeats or does not
want to receive any requests at all, but preserves the possibility to send them
itself.

SCTP-aware DTLS

DTLS can basically be used with SCTP since it has no requirements for the
transport protocol, other than the transport itself. However, DTLS may drop
messages in some scenarios, which is not appropriate with the reliable
transport of SCTP and features like retransmission timers would be existing
twice. Hence, some adaptations [5] are necessary to make DTLS SCTP-aware,
as described in RFC 6083 [6].

Being developed for unreliable transport protocols, the default behavior of
DTLS is discarding unexpected messages. This may occur when messages

arrive after a renegotiation has been performed and thus the key material has
been changed. These messages cannot be decrypted anymore and will be
dropped. SCTP supports multiple streams, that is multiple unidirectional
channels within the same connection. This can be used to separate logically
independent data from each other, for example retrieving each object of a
website (text, images, videos, etc.) on a diferent stream. So the order of the
messages has to be maintained per stream only, not across multiple streams. If
a message is lost, only the messages of the same stream have to be delayed
until the retransmission arrives, while without multi-streaming all messages will
be delayed. Therefore, data across multiple streams is likely to arrive
reordered. Additionally, SCTP supports unordered delivery within a stream as
well. To prevent message loss, it has to be ensured that the data transmission
is stopped and every outstanding message has been received before initiating
a renegotiation. The Extension PR-SCTP to send messages unreliable is
supported without any modifcations, since DTLS is particularly made for
unreliable protocols.

Since SCTP provides reliable transfer, DTLS' reliability mechanisms for the
handshake are not necessary anymore and the timer and fragmentation must
not be used. The replay check is done by SCTP as well, so this is also not
necessary.

DTLS Implementation of OpenSSL

A prototype implementation of DTLS for OpenSSL was developed while it was
specifed and standardized in 2005 [7]. It is part of the ofcial releases since
version 0.9.8, but did not receive much attention until the release of version
1.0.0, which already contained many bug fxes [8]. However, the architecture
and API of OpenSSL was designed for TLS and its TCP connections, which
caused some difculties and limitations when implementing DTLS.

The architecture of OpenSSL is basically split into three parts, the context
(CTX), the session (SSL) and basic I/O functionality (BIO). The context knows
which protocol, that is SSL version 2 or 3, TLS or DTLS, is used, holds a session
cache and other global parameters. For every new session an SSL object is
created from the context and uses these parameters. The SSL object itself
holds the session state and a BIO object for I/O abstraction. The BIO object can
communicate with a networking socket or another BIO object, creating a so-
called chain of BIO objects. A possible combination could be a bufering BIO
before the actual socket BIO.

When initializing the context with a protocol, an SSL_METHOD object will be
assigned to it. This object is specifc to the protocol and contains a set of
functions for every action, like sending, receiving, handshaking and so on. Each
SSL object created for a new connection with this context will map the generic
API to these functions. Hence, the DTLS implementation was added with a DTLS
specifc SSL_METHOD and corresponding functions. This can already be used
with the existing BIO objects, which are TCP specifc though. To use another
protocol, like UDP or SCTP, new BIO objects aware of their characteristics had
to be created.

Since this architecture has been created for TCP based connections, the
relation between SSL and socket BIO objects is always one-to-one. This results
in the limitation that transport protocol connections can also only be one-to-
one, although SCTP can be used and UDP is only used one-to-many style, that
is handling multiple connections per socket. The one-to-many style cannot be
realized with OpenSSL without elaborate modifcations to its architecture and
API, because multiple SSL objects would have to share a single BIO object. As a
workaround, SCTP can only be used one-to-one style, like TCP, and UDP has to
use connected sockets to simulate a one-to-one behavior.

OpenSSL DTLS API

The API used for DTLS is mostly the same as for TLS, because of the mapping
of generic functions to protocol specifc ones. Some additional functions are still
necessary, because of the new BIO objects and the timer handling for
handshake messages. The generic concept of the API is described in the
following sections. Examples of applications using DTLS are available at [9].

Prerequisites

Every program using OpenSSL has to start with initializing the library by calling

 SSL_load_error_strings(); /* readable error messages */
 SSL_library_init(); /* initialize library */

before any other action can be done. The DTLS specifc context can be created
thereafter, from which SSL objects for each connection can be derived. The
context is diferent for the client and server, and several parameters, including
certifcates and keys, have to be set:

 /***** SERVER *****/
 ctx = SSL_CTX_new(DTLSv1_server_method());

 /***** CLIENT *****/
 ctx = SSL_CTX_new(DTLSv1_client_method());

 /***** BOTH *****/
 /* Load certificates and key */
 SSL_CTX_use_certificate_chain_file(ctx, "cert.pem");
 SSL_CTX_use_PrivateKey_file(ctx, "key.pem", SSL_FILETYPE_PEM);

 /* Server: Client has to authenticate */
 /* Client: verify server's certificate */
 SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER, verify_cert);

 SSL_CTX_set_cookie_generate_cb(ctx, generate_cookie);
 SSL_CTX_set_cookie_verify_cb(ctx, verify_cookie);

Note that three callback functions have been used, that is verify_cert(),
generate_cookie() and verify_cookie(). The frst function, verify_cert(), is called

every time a certifcate has been received. This function has to verify the
certifcate and returns 1 if trusted or 0 otherwise. Usually the program will print
certifcate details and ask the user if he trusts it, or maintains a database of
known certifcates. In case the certifcate is not trusted, the handshake and
therefore the connection setup will fail. The other callback functions,
generate_cookie() and verify_cookie(), are used for the cookie handling. When
a cookie has to be generated for a HelloVerifyRequest, the generate_cookie()
function is called and after receiving a cookie attached to a ClientHello the
verify_cookie() function. The content is arbitrary, but for security reasons it
should contain the client's address, a timestamp and should be signed. The
signatures of the callback functions are as follows:

 /* Certificate verification. Returns 1 if trusted, else 0 */
 int verify_cert(int ok, X509_STORE_CTX *ctx);

 /* Generate cookie. Returns 1 on success, 0 otherwise */
 int generate_cookie(SSL *ssl, unsigned char *cookie,
 unsigned int *cookie_len);

 /* Verify cookie. Returns 1 on success, 0 otherwise */
 int verify_cookie(SSL *ssl, unsigned char *cookie,
 unsigned int cookie_len);

Connection setup

The server needs a socket for awaiting incoming connections. For this socket a
BIO object has to be created, which can then be used with an SSL object to
respond to connection attempts. To prevent DOS attacks, the server should use
the HelloVerifyRequest to verify the client's address. Since this is unique to
DTLS, there are newly added functions to realize this.

 int fd = socket(AF_INET6, SOCK_DGRAM, 0);
 bind(fd, &server_addr, sizeof(struct sockaddr_in6));

 while(1) {
 BIO *bio = BIO_new_dgram(fd, BIO_NOCLOSE);

 SSL *ssl = SSL_new(ctx);
 SSL_set_bio(ssl, bio, bio);

 /* Enable cookie exchange */
 SSL_set_options(ssl, SSL_OP_COOKIE_EXCHANGE);

 /* Wait for incoming connections */
 while (!DTLSv1_listen(ssl, &client_addr));

 /* Handle client connection */
 ...
 }

At frst, BIO_new_dgram() is used instead of BIO_new() to create a UDP specifc
BIO. Then a new SSL object is created using the previously set up context, to
which the BIO object is assigned. The cookie exchange is not enabled by
default and has to be enabled with the corresponding option. The new function
DTLSv1_listen() waits for incoming ClientHellos on the listening socket,
responds with a HelloVerifyRequest and returns 0, which indicates that no
client has been verifed yet and it needs to be called again to continue
listening. When the client repeats its ClientHello with a valid cookie attached,
the function will return 1 and the sockaddr structure of the verifed client. The
sockaddr structure can be used to create a new socket, connected to this
client, which is used to replace the listening socket in the BIO object. Hereafter
the SSL object can be used for this connection, preferably in a new thread,
while new BIO and SSL objects have to be created for the listening socket, to
continue listening.

 /* Handle client connection */
 int client_fd = socket(AF_INET6, SOCK_DGRAM, 0);
 bind(client_fd, &server_addr, sizeof(struct sockaddr_in6));
 connect(client_fd, &client_addr, sizeof(struct sockaddr_in6));

 /* Set new fd and set BIO to connected */
 BIO *cbio = SSL_get_rbio(ssl);
 BIO_set_fd(cbio, client_fd, BIO_NOCLOSE);
 BIO_ctrl(cbio, BIO_CTRL_DGRAM_SET_CONNECTED, 0, &client_addr);

 /* Finish handshake */
 SSL_accept(ssl);

Since the handshake has only been performed until the repeated ClientHello,
SSL_accept() to complete the handshake still has to be called, before sending
and receiving data.

Connecting the client to a server is rather straightforward. A socket connected
to the server has to be created and put into a corresponding BIO object, which
itself is used by an SSL object.

 int fd = socket(AF_INET6, SOCK_DGRAM, 0);
 connect(fd, &server_addr, sizeof(struct sockaddr_in6));

 BIO *bio = BIO_new_dgram(fd, BIO_NOCLOSE);
 BIO_ctrl(cbio, BIO_CTRL_DGRAM_SET_CONNECTED, 0, &server_addr);

 SSL *ssl = SSL_new(ctx);
 SSL_set_bio(ssl, bio, bio);

 /* Perform handshake */
 SSL_connect(ssl);

Sending & Receiving

Sending and receiving with DTLS is just the same as with TLS. The functions
used are SSL_write() for sending and SSL_read() for receiving. Both return the
number of bytes sent and received, respectively. In case -1 is returned, an error
handling is necessary, because there are several reasons why this could have
happened. The function SSL_get_error() determines if and what kind of error
occurred. This is the same for sending and receiving, and should be done after
every SSL_read() and SSL_write() call.

Return value Description

SSL_ERROR_NONE No error.

SSL_ERROR_ZERO_RETURN Transport connection closed.

SSL_ERROR_WANT_READ
SSL_ERROR_WANT_WRITE

Reading/Writing had to be interrupted, just try
again.

SSL_ERROR_WANT_CONNECT,
SSL_ERROR_WANT_ACCEPT

Connecting/Accepting had to be interrupted,
just try again.

SSL_ERROR_WANT_X509_LOOKUP Interrupt for certifcate lookup. Try again.

SSL_ERROR_SYSCALL Socket error.

SSL_ERROR_SSL SSL protocol error, connection failed.

The return value SSL_ERROR_SYSCALL indicates that a problem occurred while
calling recvfrom() or sendto() internally. The kind of error can be determined
with the errno variable. Usually, a socket error is fatal and the connection
cannot be continued, for example after ENOMEM, that is no memory left.
However, some errors, like ECONNRESET (“Connection reset by peer”), may be
ignored. This error only occurs when the peer closed its port, thus dropped a
packet and notifes this with an Internet Control Message Protocol (ICMP)
message. Such a message can easily be faked by an attacker to shut down the
connection. Instead, the Heartbeat Extension should be used to check the
peer's availability.

Timer and Socket Timeout Handling

To set socket timeouts, the function BIO_ctrl() should be used with the
corresponding BIO object:

 struct timeval timeout;
 timeout.tv_sec = 5;
 timeout.tv_usec = 0;
 BIO_ctrl(bio, BIO_CTRL_DGRAM_SET_RECV_TIMEOUT, 0, &timeout);

Whenever a socket timeout occurs, that is EAGAIN or EWOULDBLOCK is
returned, the SSL_read() or SSL_write() call will return SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE. So to determine if this error was really caused by
a socket timeout, the BIO object has to be asked:

 int len = SSL_read(ssl, buffer, sizeof(buffer));
 switch (SSL_get_error(ssl, len)) {
 ...
 case SSL_ERROR_WANT_READ:
 /* Handle socket timeouts */
 if (BIO_ctrl(bio, BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP,
 0, NULL)) {
 num_timeouts++;
 }
 break;
 ...
 }

Besides the handling of socket timeouts, DTLS has also handshake timers
which have to be considered. When socket timeouts are set, DTLS will
automatically adjust them while handshaking if they expire too late, so the
blocking call will return and retransmissions can be performed. After the
handshake has been done, the socket timeouts are reset to the previous
values. However, this does not work with non-blocking sockets, because no
DTLS function will be called if there is no incoming or outgoing trafc. So when
using non-blocking calls with select(), its timeout has to be set accordingly with
the function DTLSv1_get_timeout(), which will return the time until the next
timer expires, if any is running. In that case, DTLSv1_handle_timeout() must be
called to perform retransmissions:

 struct timeval timeout;
 DTLSv1_get_timeout(ssl, &timeout);
 int num = select(FD_SETSIZE, &rsocks, NULL, NULL, &timeout) {
 /* Handle timeouts */
 if (num == 0) {
 DTLSv1_handle_timeout(ssl);
 }
 ...
 }

For simplicity, no socket timeouts should be set before the initial handshake is
done with SSL_connect() and SSL_accept(), because if the socket timeouts
expire earlier than the handshake timeouts, additional error handling will be
necessary to resume the handshake in that case.

SCTP specific API

To use DTLS with SCTP, a corresponding BIO object is necessary. An SCTP-aware
BIO object can be created with the function BIO_dgram_sctp_new(). Since SCTP
supports one-to-one style connections, DTLSv1_listen() must not be used, and
the connection handling can just be done by creating a new socket for each
incoming connection with accept() and calling SSL_accept() afterwards to
perform the initial handshake. To make use of SCTP's additional features, that is
notifcations and streams, the API of the BIO object has been extended.

SCTP supports notifcations, which are informational messages sent by the
protocol stack via the socket read call. They cannot be passed to the DTLS
layer for decryption because they are neither encrypted nor a valid DTLS
message and thus would be discarded. To retrieve notifcations anyway, a
callback function can be registered with the BIO object, which is then called for
every incoming notifcation.

 void notifications(BIO *bio, void *context, void *buffer) {
 SSL *ssl = (SSL*) context;
 ...
 }

 void *context = (void*) ssl;
 BIO_dgram_sctp_notification_cb(bio, ¬ifications, context);

The context is an arbitrary pointer which will be passed with every call. This
can be used to pass the SSL object which the occurring notifcation belongs to,
for example.

To make use of multi-streaming and other features of SCTP, the user needs to
get and set additional information and the fags passed with a send/receive
socket call, to read for example which stream has been used for the received
message and to set the stream on which the next message should be sent. The
BIO_ctrl() function provides several options for getting and setting appropriate
structures:

Option Description

BIO_CTRL_DGRAM_SCTP_GET_SNDINFO Get sndinfo for next messages sent.

BIO_CTRL_DGRAM_SCTP_SET_SNDINFO Set sndinfo for next messages sent.

BIO_CTRL_DGRAM_SCTP_GET_RCVINFO Get rcvinfo for last message received.

BIO_CTRL_DGRAM_SCTP_SET_RCVINFO Set rcvinfo for last message received.

BIO_CTRL_DGRAM_SCTP_GET_PRINFO Get prinfo for next messages sent.

BIO_CTRL_DGRAM_SCTP_SET_PRINFO Set prinfo for next messages sent.

The structures used are defned as follows:

 /* Information used for sending */
 struct bio_dgram_sctp_sndinfo
 {
 uint16_t snd_sid;
 uint16_t snd_flags;
 uint32_t snd_ppid;
 uint32_t snd_context;
 };

 /* Information after receiving */
 struct bio_dgram_sctp_rcvinfo
 {
 uint16_t rcv_sid;
 uint16_t rcv_ssn;
 uint16_t rcv_flags;
 uint32_t rcv_ppid;
 uint32_t rcv_tsn;
 uint32_t rcv_cumtsn;
 uint32_t rcv_context;
 };

 /* Configuring PR-SCTP */
 struct bio_dgram_sctp_prinfo
 {
 uint16_t pr_policy;
 uint32_t pr_value;
 };

This examples shows how to use the BIO_ctrl() call and the listed options to
retrieve the additional information SCTP passes with each received message:

 struct bio_dgram_sctp_rcvinfo rcvinfo;
 BIO_ctrl(bio, BIO_CTRL_DGRAM_SCTP_GET_RCVINFO,
 sizeof(struct bio_dgram_sctp_rcvinfo), &rcvinfo);
 printf(“Received message on stream %d.”, rvcinfo.rcv_sid);

Conclusion

The widely deployed TLS works without limitations only with TCP, which is not
the preferred transport protocol in all scenarios. To secure an unreliable
protocol like UDP or one with special features like SCTP, its modifcation DTLS
can be used. All dependencies to the transport protocol have been removed, so
DTLS does not require any feature but the transport itself.

OpenSSL contains a DTLS implementation for UDP since release 0.9.8, with
major improvements since release 1.0.0. Heartbeat and SCTP support is
available as a patch and is planned to be included in release 1.0.1.

With the inclusion of DTLS in OpenSSL, it is available on many diferent
platforms and even by default on most open source operating systems.
Furthermore, applications that want to make use of DTLS without relying on the
operating system can already be deployed as a static build with the latest
OpenSSL release. This even allows to use DTLS on restricted mobile platforms
like Apple's iOS and Google's Android.

References

[1] T. Dierks; E. Rescorla. The Transport Layer Security (TLS) Protocol. IETF
RFC 5246 - August 2008

[2] R. Stewart. Stream Control Transmission Protocol. IETF RFC 4960 -
September 2007

[3] E. Rescorla; N. Modadugu. Datagram Transport Layer Security. IETF
RFC 4347 - April 2006

[4] R. Seggelmann; M. Tüxen; M. Williams. Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension. IETF
draft-ietf-tls-dtls-heartbeat-02 (work in progress) - February 2011

[5] R. Seggelmann; M. Tüxen; E.P. Rathgeb. Design and Implementation of
SCTP-aware DTLS. Proceedings of the International Conference on
Telecommunication and Multimedia (TEMU), Greece - July 2010

[6] M. Tüxen; R. Seggelmann; E. Rescorla. Datagram Transport Layer Security
(DTLS) for Stream Control Transmission Protocol (SCTP). IETF RFC 6083 -
December 2010

[7] N. Modadugu; E. Rescorla. The Design and Implementation of Datagram
TLS, Proceedings of the Network and Distributed System Security
Symposium (NDSS), USA - February 2004

[8] http://sctp.fh-muenster.de/dtls-patches.html

[9] http://sctp.fh-muenster.de/dtls-samples.html

	Datagram Transport Layer Security
	Protocol Introduction
	Base Protocol
	Record Layer
	Handshake Protocol
	Alert Protocol
	Replay Check

	Heartbeat Extension
	SCTP-aware DTLS
	DTLS Implementation of OpenSSL
	OpenSSL DTLS API
	Prerequisites
	Connection setup
	Sending & Receiving
	Timer and Socket Timeout Handling
	SCTP specific API

	Conclusion
	References

